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welcome.
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 Workshop Organisation

Section A: GPR forward problem - FDTD 

Basic concepts of GPR modelling; Basic concepts of FDTD; Stability; 

Dispersion; modelling of objects; excitation; modelling errors; pitfalls and 
problems; advanced topics 

Section B: gprMax 

Introduction to gprMax; History; Development; availability; limitations;
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First things first!
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GPR modelling 
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What do we need to model ? 
(…from an electromagnetic point of view …)

 GPR Modelling
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 GPR Modelling

Why we bother ?

Because a GPR model ... 

...could improve our understanding and aid the interpretation 

of complex data sets. 

...could be the test-bed for new processing techniques or 

could be used to assess the effectiveness of existing ones. 

...could be used as part of an automatic interpretation 

process. In other words help us to solve the inverse problem.
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 GPR Modelling

How can we do it ?

By simply solving Maxwell’s equations which are the 
governing equations for the GPR forward problem. The 

solution is found subject to the initial and boundary 
conditions. 
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Maxwell’s 

equations 
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 Continuity of electric charge
Not usually part of  Maxwell’s equations 
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 Maxwell’s Integral Equations 
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���

V

(⇤ · A)dV

�

S

A · d̂l =
⇥⇥

S

(⇤⇥A) · dŝ

 With Stoke’s and divergence theorems 

we get the differential forms ....
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⇥ � E = ��B
�t

 Faraday’s law

18

⇥ � H =
�D
�t

+ Jc + Js

 Ampere-Maxwell law
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⇥ · D = qv

 Gauss’ electric law
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⇥ · B = 0

 Gauss’ magnetic law
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 Maxwell’s Differential Equations 

⇥ � E = ��B
�t

⇥ � H =
�D
�t

+ Jc + Js

⇥ · D = qv ⇥ · B = 0

22

D = ¯̄� � E
B = ¯̄µ � H
Jc = ¯̄⇤ � E

 Constitutive Relations for fields
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For simple cases where the electrical properties can be assumed 

to be frequency independent the convolutions reduce to 

multiplications. For isotropic media the tensors reduce to 
scalars and computations are simplified. 

The fact that the electrical properties can be assumed that do 

not vary with frequency does not mean that the velocity of 
propagation or the attenuation of the electromagnetic pulses is 

frequency independent! 
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D = �E
B = µH
Jc = ⇤E

�r =
�

�0
µr =

µ

µ0
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How we solve these equations ?

Analytically with great difficult and only for simple 

cases and geometries. Lots of Brain Power little 

Computing Power! 

Numerically with relative ease for more realistic 

problems and complex geometries. Lots of 

Computing Power not much Brain Power! 
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A. Sommerfeld, M.J. Strutt, 
H. Weyl, R.K. Moore, C.T. 

Tai, H. Ott, J.R. Wait,   

R.W. King, A. Baños, A.P. 
Annan and many more ...  
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Which numerical method?

Integral Formulations Differential Formulations 
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j� ⇥/⇥t

Which numerical method?

Frequency Domain Time Domain 
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G(Y (t), Y (t + �t)) = 0 Y (t + �t) = F (Y (t))

Which numerical method?

Implicit Explicit
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FDTD
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M. Moghaddam,W.C. 

Chew,T. Wang, G. W. 
Hohmann, Roberts R., Daniels 

J.J., Bourgeois, G. Smith, L. 

Gurel, T. Bergmann, K. 
Holliger, F. L. Teixera,  N. 

Cassidy and “many more ...  
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Simple to understand and implement. 

Full wave solution. 

No matrix inversion.  

Direct time domain solution. 

Easy to parallelize. 

Able to treat dispersive materials.

☀
good

the FDTD
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☁
the

bad

 FDTD

Staggered arrangements of fields in space and time. 

Staircases used to model curved boundaries.  

Longer computing times in comparison with simpler 

approximations. 

Stability condition could mean longer simulation time. 
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☂

and

the 
ugly

 FDTD

Big 3D models are computationally very expensive. 

Detailed antenna modelling including targets is still a 

challenging problem. 

Requirement for modelling the complete volume even 

for areas where there are no targets.
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How it works
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Space is discretised using small cuboid cells called Yee Cells. 

The electromagnetic field components are arranged in a 

regular fashion depending on the geometry of the Yee cell. 

There are no field components co-located in space. They are 

all arranged in a staggered fashion. 

Material properties are assigned at the location of relevant 

electromagnetic field components.
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Time is discretised and the solution advances with 
small steps until it reaches the required time 

window. 

The electromagnetic field components are staggered 
in time as well. The electric fields are computed half 

a time-step apart from the magnetic fields. 

This type of numerical integration of the underlying 

governing equations is called a leapfrog system.
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Differential forms of 

Maxwell’s equations
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Section A: FDTD

Finite difference 

approximations
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61 Section A: FDTD

Stability

... there is no free lunch ... 
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FDTD is a march on time electromagnetic solver. It propagates 

the electromagnetic fields in the FDTD grid directly in the 
time domain by a small amount for every every time step.  

Because it does this in an explicit fashion the time step cannot 

be assigned arbitrarily to any value we wish. It needs to be 
controlled and has an upper bound limit which is: 

 Courant Stability Condition
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�t � 1

c
�

1
�x2 + 1

�y2

The 2D condition is easily obtained from the 3D one ... 

 Courant Stability Condition

�t � 1

c
�

1
�x2 + 1

�y2 + 1
�z2
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�t � �l

c
⇥

3
�t � �l

c
⇥

2

 Courant Stability Condition

When all spatial steps are equal:

�x = �y = �z = �l

 3D  2D
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 2D Stability: What does it mean?
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So, the stability condition tells us that information in the model 

cannot travel faster than the speed of light! Something, that 

we did already know ... 

The stability condition is formally obtained by substituting into 
the FDTD equations of a plane, monochromatic, traveling-

wave trial solution.  

This type of analysis leads us as well to the dispersion relation 

of the FDTD method and allow us to establish formally the 

stability criterion.

67 Section A: FDTD

Objects and media

68



The FDTD lattice is a construction which represents 

locations of electromagnetic field components. 

Building an object in the FDTD grid involves the 

assignment of constitutive properties at appropriate 

locations of electric and magnetic field components rather 

than filling Yee cells with material. 

This sometimes creates a “conceptual” problem on how 

targets and objects are represented. It is not very 

significant for dielectric media but care is needed for 

perfect electric conductors.
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3D Object modelling in FDTD

70

x

y

z

Hy

Hy2

Hy4

Hy

Hx

Hx1 Hx3

Hx

E z

E z1 E z2

E z3E z4

!  ,"1 1

!  ,"3 3
!  ,"4 4

!  ,"2 2

C 1

S 1

S 3S 4

S 2

C 3

C 2

C 4

�

C

H · d̂l =
⇥⇥

S

�D
�t

· dŝ +
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2D Object modelling in gprMax
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If both magnetic and electric properties are varying then 

objects boundaries are not clearly defined as the electric 

and magnetic fields are staggered in space. Fortunately, 

this is not common practice in GPR. 

The generalized Yee or “averaging” approach works well 
with dielectric materials. In benchmark problems (e.g. 

scattering of spheres) it produces more accurate results in 

comparison with the non-averaging scheme.
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Boundary 

Conditions

75

Electromagnetic  Boundary 
Conditions  

Initial Conditions 

Problem specific Boundary 
Conditions

76



The tangential electric fields are continuous. 

The tangential magnetic fields are continuous unless there is a 

surface current on the boundary which in this case are 
discontinuous by the amount: 

The electric flux density perpendicular to the interface is 
continuous unless there is a surface charge on the boundary which 

in this case is discontinuous by that amount:  

The magnetic flux density perpendicular to the interface is 

continuous

 Electromagnetic Boundary Conditions

On the boundary between two media with finite 
but different electrical properties: 

�n̂⇥ Js

�s
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The tangential electric fields are zero. 

The tangential magnetic fields are equal to a surface current on 

the boundary which is: 

The magnetic flux density perpendicular to the interface is zero  

The electric flux density perpendicular to the interface equal

 Electromagnetic Boundary Conditions

On the boundary between two media one of 
which is a perfect conductor: 

�n̂⇥ Js

�s
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FDTD satisfies intrinsically the 

electromagnetic boundary conditions. 

In other words we don’t need to do 

anything about them! 

79

x

y

z

E y

H y

H y

E y

E y

E y

Ez

Ez Ez

Ez

E x

E x

E x

E x

H z

H z

Hx Hx
E y

H y

H y

E y

E y

E y

Ez

Ez Ez

Ez

E x

E x

E x

E x

H z

H z

Hx Hx

!  ,"1 1 !  ,"2 2

Boundary conditions in FDTD
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 Initial Conditions

The variation in space and time of our sources 

need to be specified as they are the initial 

conditions. 

This is easily achieved directly in the time 

domain by specify source current densities at 
specific points in our model according to the 

Maxwell-Ampere equation: 

⇥ � H =
�D
�t

+ Jc + Js
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�
⇤Ey

⇤t
+ ⇥Ey + Jy =

⇤Hx

⇤z
� ⇤Hz

⇤x
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Jy =
Is(t)�y

�x�z
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 Problem specific Boundary Conditions

In most cases there are no specific boundary 

conditions that bound or limit the spatial extent of 

a GPR forward problem and can be used to 

prescribe specific values for the electromagnetic 

fields. 

The boundary condition for the GPR problem is the 

radiation condition which means that the fields are 

decayed to zero values at infinity. This is tricky to 

accomplish with finite computational resources 

Obviously, the FDTD grid which represents our 

model needs to be finite. This leads to the 

requirement for ....
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targets

Earth

Air

ABC

Tx
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Absorbing  

Boundary 

Conditions

89

We need ABCs ...

to compute the boundary field 
components!

90

Local absorbing boundary conditions: These are based on the 

“one wave equation”. This is a pseudo-differential equation 

which aims to propagate waves in one direction only! In essence 

these conditions predict the required boundary field values from 

known internal values at previous and current time instant. 

Their performance depends strongly on angle of incidence, the 

assumed velocity of propagation, and cannot be placed close to 

sources and scatterers. They have problems for layered 

geometries or strongly inhomogeneous models. 

They exhibit instabilities when the order of approximation is 

increased. They are not used often any more!

 Local ABCs (of historical interest)

91

Perfectly Matched Layers: These are based on the introduction 

of special properties on the boundary layers of the FDTD grid. 

These layers are then “matched” to the normal FDTD grid 

properties. At the same time they attenuate the 

electromagnetic fields so no reflection returns from the FDTD 

grid boundary. 

PMLs can be seen as non-Maxwellian anisotropic materials or as 

a scaling of space using a complex variable or otherwise as 

“complex stretching of space” 

PMLs offer excellent absorption in most cases and their 

performance could be independent of frequency or underlying 

medium properties.

 Perfectly Matched Layers
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 Simple harmonic source
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 Simple pulse source
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 Standard PML  CFS PML

Revolutionised ABCs in 

computational electrodynamics and 
other areas of wave propagation! 

Relative simple to implement. 

Does not work very well for 
evanescent and other 

inhomogeneous waves. 

Does not work very well for grazing 

incidence waves and very low 

frequency modes.

Introduced to remove the zero 

frequency pole of the standard 

formulation. 

More costly to implement especially 

for anisotropic medium PMLs 

Works with evanescent waves and 
standard propagating modes. 

Difficult to optimise! To many 
degrees of freedom. 
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 CFS PML formulations

Split field PML and complex stretched 

formulations are theoretically equivalent.  

Implementation of non-split PMLs is much 

preferred for simplicity. 
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 CFS PML implementations

The “Convolutional” PML (CPML) (Roden and Gedney) 

The “Recursive Integration” PML (RIPML) 

(Giannopoulos) 
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Errors

... there is no free dinner either ... 

103

In any numerical approximation there are errors 
which we are trying to minimize. Some are 

more important than others but it is paramount 

to always remember that a model is just an 

approximation! 

We can make this approximation as good or 

bad as we wish depending on resources and 

time and obviously skill and understanding of 

the underlying issues that govern this 

approximation.
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 Truncation error

This type of error is only relevant if frequency domain 

quantities need to be calculated from the time domain output 

of the model. 

It relates to the fact that the time domain response is of finite 

duration and if there is significant oscillations that have not 

reduced in amplitude by the time we stop the simulation the 

Fourier transformation of the time domain response will be 

affected. 

This error is not of great significance for most GPR models!
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This relates to the choice of the spatial discretization 
step. It is a modelling error that creeps in if we do not 

resolve the geometry of a target adequately using 
enough Yee cells. 

In essence this error means we are modelling the 
wrong target if we have not used enough Yee cells to 

resolve its important features properly. 

Minimizing this error has an effect on computational 

requirements. 

For example, modelling a rebar with 1 cm diameter 

using 1 cm spatial step ...

 Coarseness error
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 Staircasing error
An FDTD grid is a collection of Yee cells. Objects that in 
have curved boundaries are approximated by a staircased 

version of their real geometry. 

If the spatial step is small enough in comparison with the 

curvature of the object’s boundary then this error should 
be small. 

It is worst for curved electric conductors as these support 
currents on their surface. The path of these currents is 

not exactly the same in the model as it would be on the 
real target.  
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 GSSI 1.5 GHz

108



 GSSI 1.5 GHz
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 Velocity error (Numerical Dispersion)

This is the most significant of errors as it can introduce artificial 

dispersion of the electromagnetic pulses propagating in the FDTD 
grid. 

The numerical phase velocity of propagation in the FDTD model 
deviates from the one in the actual medium by an amount which 

depends on the ratio of the wavelength to the spatial step. The 
greater this ratio the smaller the error. 

This error depends on the direction of wave propagation as well!

110

�
1

c�t
sin(

��t

2
)
⇥2

=
�

1
�x

sin(
kx�x

2
)
⇥2

+
�

1
�y

sin(
ky�y

2
)
⇥2

+
�

1
�z

sin(
kz�z

2

⇥2

��

c

⇥2
= k2

x + k2
y + k2

z

 after some maths ....

 which for small arguments of the sines
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kx = ky = kz = k/
�

(3)

�t � �l

c
⇥

3

 and

 However, when ...

 There is no dispersion !!!
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�l � �min

10

 so, to keep this error at bay ...

 at least ....

114

Advanced topics

115

Dispersive materials. 

Higher Order approximations to reduce 

the velocity error. 

Introducing sub-grids with finer spatial 
resolution only where is needed. 

Advanced Parallelisation using GPUs to 

increase performance. (something is 
smoking here …)
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so, how we use 

all these stuff?

117

Simple Sandbox experiment

118

119 120



121

0 1 2 3 4 5 6

nanoseconds

-1

-0.5

0

0.5

1

N
o

rm
a

lis
e

d
 A

m
p

lit
u

d
e

Real Data

0 1 2 3 4 5 6

nanoseconds

-1

-0.5

0

0.5

1

N
o

rm
a

lis
e

d
 A

m
p

lit
u

d
e

Real Data
Modelled Data

122

Real Data

Model Data
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125 126

... thats enough with 

the theory!

127

... on to gprMax

128



gprMax is a numerical model for GPR based on the FDTD 

method. It was made up by two different programs GprMax2D 

and GprMax3D for 2D (TMz) and 3D numerical modelling. Now 

the new version utilises only one code for both. 

It all started in 1996 with support by the Building Research 

Establishment (BRE) as they wanted a GPR numerical model to 

simulate the responses from rebars and other defects in concrete. 

Thanks BRE! 

Since then it was very slowly been upgraded and “enhanced” with 

some new features mainly by myself. 

The old GprMax was written in C and ran from laptops to HPC 

platforms.
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No need to reinvent the 

wheel...

130

FREE! No money to pay so you cannot complain! 

Extensive documentation with examples. 

Quite robust (... but you never know ...)  

A good set of features (although I say so myself ...) 

Can run in parallel in shared memory multiprocessors. 

Flexible model generation using a set of simple 
commands and fully scriptable input file. 

A fairly decent User base given the size of the GPR 

community. 

I answer most emails with sensible questions and Craig 

will do so as well (ask him nicely …)

☀
good

the gprMax

131

☁
the

bad

 gprMax

There is no GUI. Need to exercise brain and 
think what you are doing. 

Lack of custom pre and post processing software 
to prepare models and visualise the results. 

It might need a big computer to run but so do 
the expensive commercial alternatives.
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☂

and

the 
ugly

 gprMax

As it is FREE there are no ugly attributes! 
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XFDTD @ $15,000

GprMax3D @ £0
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The basics!

135

In gprMax all things happen with the aid of simple commands 
that are used to define the model parameters. These 

commands need to be entered in a simple ASCII (text!) file. 
You can use any of your favourite editors to do so. 
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 Units and co-ordinates
The SI unit system is used. 

Although internally gprMax works on a FDTD grid made up 

from Yee cells objects are specified in real co-ordinates and 

not in cell numbers. 

This simplifies rescaling of a model by just changing the 

spatial steps without having to recompute cell co-ordinates. 

However, it is very important to remember that field 
components are not co-located - as explained before - and 

rounding is internally applied to the nearest cell.
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The time step is calculated according to the Courant stability 

condition and there is no need to worry about it. 

Sources can be turned on and off and you can have as many 

as you like. GPR arrays? 

Output points can be located anywhere in the model and 
don’t have to be realistic! In other words you can have an 

output point inside an object to monitor the evolution of the 

fields. 

Unless you model the antennas the sources mimic theoretical 

Hertzian dipoles and the receivers just appropriate field 

components.
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Object creation in the model is done with the concept of a 

“painter’s canvas”. Objects that are specified later override 

the properties of the ones that were occupying the same 

cells previously. 

The model space is always initialised to the properties of free 

space.
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So, the order of object creation commands is important 
and you need to think about them at least for a little 

while ... 

The order of other commands is not important but 

there are other exceptions as new features are added! 

In gprMax all commands start with a # as the first 

character in the line containing the command. 

Only one command per line is allowed.
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 Some common pitfalls ...

Not really modelling what you really think you are modelling! 

Specifying sources and output points (receivers) in or extremely 

close to the PML!  

Too coarse models for the targets you want to model. 

Too coarse models for the size of the wavelength of the 

maximum frequency. This leads to numerical dispersion. 

Thinking that field components are specified at the same point 

and surprised by the output! 

Not including enough free space cells above the air-earth 

interface.
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…not reading the  

documentation!

143

and remember ...

144



Garbage in, Garbage out!
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 Future features!

Subgrids for finer resolution only where needed. 

4th order boxes to control numerical dispersion in high value 

dielectrics. 

More object generation primitives. 

Benchmarking. Stop and restart simulations. 

Plane wave excitation that takes into account a half space or 

layered earth model. 

Any reasonable requests - we accept funding and large 

donations ;-) 
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 so, if you do it well you can do …

147 148

Thanks for licensing!

Questions?


